SYLLABUS – NATURAL RESOURCES 459/659 ECOSYSTEM MANAGEMENT & RESTORATION Spring, 2019

GENERAL COURSE INFO.:

Lecture: 9:00-9:50 T, R TNR 255 Discussion: 8-9:50 Friday, TNR 255

Instructor:

Dr. James Cook (346-2269; <u>icook@uwsp.edu</u>). Office: 242 CNR Office Hours: M 9-11; T 2-4; W 9-10; R 10-11; F 1-2:45

Prerequisites: Summer Camp or the Eur. Environmental Seminar; FOR 332 or BIOL 305 or BIOL 355; NR 458 or WLDF 458.

COURSE OBJECTIVES:

The overarching goal of this course is provide the ecological and technical background for ecosystem management so you can analyze the need for, and effectively plan, ecosystem management and restoration projects in a specific, socio-political context. You will attain a broad understanding of: 1) ecological and conceptual underpinnings of ecosystem management & restoration; 2) ecosystem function of forest, grassland, floodplain and wetlands, 3) restoration and monitoring techniques, and 4) social and political constraints.

Scope: The emphasis is on the structure and function of landscapes, and the forest, grassland and wetland ecosystems they contain. Though the protection and enhancement of biodiversity are important objectives, they will not be emphasized in NR459 because this topic is covered thoroughly in NR 458/WLDF 458.

COURSE STRUCTURE: THIS IS RATHER UNIQUE – PLEASE READ CAREFULLY!

Because this course is the Capstone Course for the Ecosystem Restor & Mngt. [ER&M] Option, but not all class members are in that major, the class has two tracks – one for the ER&M majors, and and a second for all other majors. The assignments and grade determination differ between these two groups. The major difference is that the ER&M majors will complete a group project and present their plan to the class. The second half of the Discussion on Friday is for ER&M majors only. On a couple of Fridays in March, the ER&M majors will go to the field, and on those days the other majors will have a day off.

Organization of Lecture Content [this applies to all]:

- I. Foundations of ecosystem management (EM) and restoration
- II. Importance of temporal scales, spatial scales, uncertainty & disturbance regimes
- III. Overview of landscape, forest, river+floodplain, grassland and wetland ecology
- IV. Role of genetics in EM&R
- V. Adaptive management & monitoring
- VI. Restoration techniques
- VII. Case studies San Juan Mts., NWFP, Moses Creek
- VIII. Role of climate change in ER&M

Text: There is not a text for the course. Journal articles are used extensively, and will be made available <u>in CANVAS</u>. All powerpoints and outlines are posted in Canvas.

LECTURE SCHEDULE, TOPICS & READINGS:

Week	Date	Topic	Reading	Instructor
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2000		Assignment	1110010001
1	1/22	Evolution of EM	Grumbine 1994	Cook
1	1/24	What is restoration? Charac's of targets; HRV	Moore et al. 1999 ; H/O^	Cook
1	1/25	A. Temporal scales*** B. Introduction to project	 H/O	Cook
2	1/29	Issues of temporal scale – reliability of the record	Swetnam et al. 1999	Cook
2	1/31	Uncertainty – why, and how to address	Samuels & Lockwood 2002	Cook
2	2/1	A. Issues of spatial scale in EM & restorationB. Context, constraints, objectives of unit	Hobbs 2003, pg. 223-227; sections 3.3, 4.6	Cook Rose?
3	2/5	Spatial scale – complete		Cook
3	2/7	Landscape ecology		Cook
3	2/8	A. Ecosystem processes - terrestrial B. Informational needs – EM plan	Goebel et al. 2005	Cook
4	2/12	Wetland processes		Hermann**
4	2/14	Role of disturbance, importance of disturb. regime (DR)	Sousa 1984, pg. 353-380 (skip 362-63)	Cook
4	2/15	A. DR (compete) B. Disturb regimes – Greak Lakes region	 Brose et al. 2014, Chap. 2	Cook
5	2/19	Disturbance regime (DR) based EM	Cissel et al. 1999	Cook
5	2/21	DR based EM - complete		Cook
5	2/22	A. Disturb. regimes other systems B. Plan process, goals	Allen et al. 2002	Cook
6	2/26	Role of genetics		Cook
6	2/28	Role of genetics - complete	Bischoff et al. 2010	Cook
6	3/1	A. Prep for exam B. Landscape influences		Cook
7	3/1	<u> </u>		Cook Cook
		B. Landscape influences		

		B. Discuss outline, refine; prepare for site visit		Cook
8	3/12	Restoration techniques – forests		Cook
8	3/14	Forest techniques – complete; S.J. Project	H/O(2)	Cook
8	3/15	Site visit – Restor. Majors	To the field*	Cook
9	3/26	Grassland ecology & dynamics	Knapp et al. 1999	Cook
9	3/28	Function & restor. – grasslands	Rowe 2010	Cook
9	3/29	Site visit – Restor. Majors	To the field*	Cook
10	4/2	Case study: Northwest Forest Plan – background, objectives	Thomas et al. 2006	Cook
10	4/4	NWFP – presciprtion & evaluation	Davis et al. 2011 – Abstract+ Summary	Cook
10	4/5	No class – CNR URS		
11	4/9	Riverine/floodplain ecology		Cook
11	4/11	Floodplain restoration	Molles et al. 1998	Cook
11	4/12	Management of SNA's (WI)		Nooker**
12	4/16	Restor. Tech's – wetlands	Hazelton et al. 2014	Gumtow**
12	4/18	Case study - Moses Creek, History & Overview		Bucholz**
12	4/19	A. Moses Creek – meet on site @ bridge, north end.* B. Nothing scheduled; field discussion lasts until 9:30	Field*	Cook
13	4/23	Plant community assessment – metrics	{Matthews et al. 2009, Mushet et al. 2002}	Cook
13	4/25	Complete 'assessment metrics'; begin Challenges of EM on NIP lands		Cook
13	4/26	A. Complete "Challenges" B. Flex time – prepare!		Cook
14	4/30	Landscape-level habitat mngt	Haufler et al. 1996	Cook

14	5/2	Group presentation (1)		Student group
14	5/3	Group presentations (2)		Student group
15	5/7	Restoration & climate change	Harris et al. 2006	Cook
15	5/9	Catastrophic fires – what do	Stephens et al.	Cook
		they mean for EM?	2014	
15	5/10	Review for final		Cook

[^] H/O means that a handout will be provided; TBA means to be announced

GRADE DETERMINATION

ER&M majors		All other majors	
Weightings:		Weightings:	
1 st hour exam	25%	1st hour exam	30%
Final exam (comprehensive)	30%	Final exam	40%
Project presentation	22%	Article synthesis	12%
Group report	10%	Critique of present.	8%
Outline	5%	Evolution. Envir.	10%
Peer evaluation	. 8%		

FINAL EXAM: Wed., 5/16, 12:30-2:30 pm

Grades on assignments and the final grade will be assigned as follows: 92.5+ = A; 89.5-92.4 = A-; 86.5-89.4 = B+; ETC. If you are late turning in the Group Report or Article Synthesis a penalty will be assessed between 5-30% based on how late the assignment is.

RESTORATION MAJORS:

Project Presentations: You are expected to prepare a **35-45 minute presentation** with appropriate visual aids. At least 2 people from the group must present. <u>Provide the class with a hardcopy outline of your presentation</u>. More detail will be provided in discussion.

Group Report: This will be <u>a summary</u> of your presentation, an outline and the resources you used (literature cited). It is due May 8th. More detail will be provided in discussion.

OTHER MAJORS:

1) For the 'Evolutionary Environment' assignment you need to select a specific ecosystem from the temperate or boreal regions of the world. As for #1, it may be terrestrial, wetland or aquatic, but not marine. Using one or more published sources [books and/or refereed articles], describe four factors that are important parts of the "evolutinary environment' [per Moore et al. 1999] for the system. You may not use any of the articles in the list below. Attach the citation of any article(s), and other resources, you use to complete this. This assignment is DUE March 15th.

^{***=} The topic under 'A' is for the first half of the period; 'B' is for the second half

^{**} These are tentative dates. Each involves a trip off campus or a guest speaker. I will confirm these dates or announce the changes as soon in the semester as I can. These will also be posted in Canvas.

^{*=}yes, we are going to the site so be prepared

- 2) For the 'Article Synthesis' assignment, you must select an article, OTHER THAN THE ONES WE DISCUSS in CLASS, that describes restoration of a community. It may be any terrestrial or non-marine aquatic ecosystem in the temperate or boreal zone. The article must describe at least one treatment, an outcome [Result], and an evalulation of the 'success' of the treatment. Write a one-to-two page summary of this article that includes a) objective(s), key methods and the treatment(s) performed, results, and short conclusion. This assignment is DUE April 5th. Attach the full citation of the article to the end of your synthesis.
- 3) Critique of Presentation you must attend one of the student presentations and critique it. A form will be provided. If you attend and critique a second one, you will get extra credit.

ATTENDENCE POLICY:

I expect your interest in the topic will motivate you to be in class unless there is a personal emergency or illness. No penalty will be imposed for missing a lecture. Because we do not have a text, and only a portion of the content comes from the readings, it will improve your performance and understanding SUBSTANTIALLY by attending all lectures. You are expected to meet schedule changes that are announced in class, even if you were not present.

STUDENT RESPONSIBILITY

It is your responsibility to be FULLY prepared to discuss the assigned readings, and to get ALL notes if you miss a lecture. If you have an emergency or are ill, accommodations will be made, but it is your responsibility to inform, **in writing**, why you missed. Also, if any material is not clear, YOU have to let me know; I will be happy to sit down with you one-on-one and discuss it as much as needed. As always, you are expected to follow the U.W. System rules for student conduct.

Citations for assigned lecture readings (just in case you need one or two):

Cissel, John H., Frederick J. Swanson and Peter J. Weisberg. 1999. Landscape management using historical fire regimes: Blue River, Oregon. Ecol. Applications 9:1217-1231.

Davis, R.J. and others. 2011. Status and trends of northern spotted owl populations and habitats. USDA For Serv., Gen.. Tech. Rep. PNW-GTR-850.

Grumbine, R.Edward. 1994. What is ecosystem management? Conserv. Biol. 8(1):27-38.

Haney, Alan and Rebecca L. Power. 1996. Adaptive management for sound ecosystem management. Environ. Mngt. 20(6):879-86.

Harris, J.A., R.J. Hobbs, E. Higgs and J. Aronson. 2006. Ecological restoration and global climate change. Restor. Ecol. 14(2):170-176.

Haufler, J.B., C.A. Mehl and G.J. Roloff. 1996. Using a coarse-filter approach with species assessment for ecosystem management. Wildlife Society Bulletin 24(2):200-208.

Hazelton, E. L., Mozdzer, T. J., Burdick, D. M., Kettenring, K. M., & Whigham, D. F. 2014. Phragmites australis management in the United States: 40 years of methods and outcomes. *AoB Plants*, 6, plu001.

Hobbs, N. 2003. Challenges and opportunities in integrating ecological knowledge across scales. For. Ecol. & Mngt. 181:223-238.

Knapp, Alan and others. 1999. The keystone role of bison in North American tall grass prairie. BioSci. 49(1):39-50.

Matthews, Jeffrey W., Greg Spyreas and Anton G. Endress. 2009. Trajectories of vegetation based indicators used to asses wetland restoration progress. Ecol. Appl. 19(8):2093-2107.

Molles, M., C., Jr., C.S. Crawford, L.M. Ellis, H. M. Valett and C.N. Dahm. 1998. Managed flooding for riparian ecosystem restoration. BioSci. 48(9):749-56

Moore, M.M., W.W. Covington and P.Z. Fule. 1999. Reference conditions and ecological restoration: a southwestern ponderosa pine perspective. Ecol. Applic. 9(4):1266-77.

Mushet, David M., Ned H. Euliss, Jr. and Terry L. Shaffer. 2002. Florisite quality assessment of one natural and three restored wetland complexes in North Dakota, USA. Wetlands 22(1):126-138.

Samuels, Corey L. and Julie L. Lockwood. 2002. Weeding out surprises: incorporating uncertainty into restoration models. Ecol. Restor. 20(4):262-68.

Stankey, George H., B. Bormann, C. Ryan, B. Shindler, V. Sturtevan, R. Clark and C. Philpot. 2003. Adaptive management and the Northwest Forest Plan. J. For. 101(1):40-46.

Stephens, S., N. Burrows and others. 2014. Temperate and boreal forest mega-fires: characteristics and challenges. Frontiers Ecology & Environment 12(2):115-122.

Swetnam, T. C.D. Allen and J.L. Betancourt. 1999. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9(4):1189-1206.

Thomas, Jack W., J. F. Franklin, J. Gordon and K. Johnson. 2006. The Northwest Forest Plan: origins, components, implementation experience and suggestions for change. Conser. Biol. 20:277-287.